cAMP signaling regulates DNA hydroxymethylation by augmenting the intracellular labile ferrous iron pool
نویسندگان
چکیده
It is widely accepted that cAMP regulates gene transcription principally by activating the protein kinase A (PKA)-targeted transcription factors. Here, we show that cAMP enhances the generation of 5-hydroxymethylcytosine (5hmC) in multiple cell types. 5hmC is converted from 5-methylcytosine (5mC) by Tet methylcytosine dioxygenases, for which Fe(II) is an essential cofactor. The promotion of 5hmC was mediated by a prompt increase of the intracellular labile Fe(II) pool (LIP). cAMP enhanced the acidification of endosomes for Fe(II) release to the LIP likely through RapGEF2. The effect of cAMP on Fe(II) and 5hmC was confirmed by adenylate cyclase activators, phosphodiesterase inhibitors, and most notably by stimulation of G protein-coupled receptors (GPCR). The transcriptomic changes caused by cAMP occurred in concert with 5hmC elevation in differentially transcribed genes. Collectively, these data show a previously unrecognized regulation of gene transcription by GPCR-cAMP signaling through augmentation of the intracellular labile Fe(II) pool and DNA hydroxymethylation.
منابع مشابه
A reactivity-based probe of the intracellular labile ferrous iron pool
Improved methods for studying intracellular reactive Fe(II) are of significant interest for studies of iron metabolism and disease-relevant changes in iron homeostasis. Here we describe a highly selective reactivity-based probe in which a Fenton-type reaction with intracellular labile Fe(II) leads to unmasking of the aminonucleoside puromycin. Puromycin leaves a permanent and dose-dependent mar...
متن کاملO2 availability impacts iron homeostasis in Escherichia coli.
The ferric-uptake regulator (Fur) is an Fe2+-responsive transcription factor that coordinates iron homeostasis in many bacteria. Recently, we reported that expression of the Escherichia coli Fur regulon is also impacted by O2 tension. Here, we show that for most of the Fur regulon, Fur binding and transcriptional repression increase under anaerobic conditions, suggesting that Fur is controlled ...
متن کاملIntracellular chelation of iron by bipyridyl inhibits DNA virus replication: ribonucleotide reductase maturation as a probe of intracellular iron pools.
The efficient replication of large DNA viruses requires dNTPs supplied by a viral ribonucleotide reductase. Viral ribonucleotide reductase is an early gene product of both vaccinia and herpes simplex virus. For productive infection, the apoprotein must scavenge iron from the endogenous, labile iron pool(s). The membrane-permeant, intracellular Fe(2+) chelator, 2,2'-bipyridine (bipyridyl, BIP), ...
متن کاملLeishmania donovani depletes labile iron pool to exploit iron uptake capacity of macrophage for its intracellular growth
Intracellular pathogens employ several strategies for iron acquisition from host macrophages for survival and growth, whereas macrophage resists infection by actively sequestering iron. Here, we show that instead of allowing macrophage to sequester iron, protozoan parasite Leishmania donovani (LD) uses a novel strategy to manipulate iron uptake mechanisms of the host and utilizes the taken up i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017